
1 Introduction

The damped, driven pendulum is an example of a chaotic physical system.
The motion of a simple pendulum (massm, length l, angle θ with the vertical)
without driving or damping is governed by the differential equation

mlθ̈ +mg sin θ = 0

We add a velocity-depending damping term νθ̇ and a driving force of the
form A cosωt to obtain

mlθ̈ + νθ̇ +mg sin θ = A cosωt

Which is the differential equation governing the damped, driven pendu-
lum. Now, we introduce the following dimensionless variables:

τ = ω0t

Q = mg/(νω0)

ω̂ = ω/ω0

Â = A/(mg)

The derivative becomes d/dt = ω0d/dτ , so that the differential equation
can be written as

ω2
0 θ̈ +

ω0ν

ml
θ̇ + ω2

0 sin θ =
A

ml
cos ω̂t

=⇒ θ̈ +
ν

mlω0

θ̇ + sin θ =
A

mlω2
0

cos ω̂t

Where the derivatives in θ are now taken with respect to τ . Simplifying
in terms of the new dimensionless variables,

θ̈ +
1

Q
θ̇ + sin θ = Â cos ω̂t

Which can be split into two couple first-order ODEs by defining φ = θ̇:

dθ

dτ
= φ (1)

1



dφ

dτ
=

1

Q
φ− sin θ + Â cos ω̂t (2)

Which will allow us to apply the Runge-Kutta (RK4) method.

2 Numerical Simulations

2.1 Simple Pendulum

We will first analyse the simple pendulum by setting A = ν = 0, as this will
be a good test to see if our algorithm at least returns what we expect in this
case where we have an (approximate) analytical solution for small angles. If
θ << 1 we may set sin θ ≈ θ to obtain

mlθ̈ = −θ

Which admits sinusoidal solutions. These solutions (using a small initial
condition θ0 = 0.2) can be seen in figure 1.

(a) The simple pendulum, which
admits a sinusoidal solution us-
ing RK4 as expected. θ0 = 0.2
and θ̇0 = 0.

(b) The simple pendulum, which
admits a sinusoidal solution us-
ing RK4 as expected. θ0 = 0.2
and θ̇0 = 0.

2.2 Damped Pendulum

Now we will investigate the damped, but undriven pendulum by setting A =
0. Plots using ν = 1, 5, and 10 and are given in figure 2 at various values of
N and ∆. All physical parameters are set to 1.

2



(a) Various values of ν, with N =
100 and ∆ = 1.

(b) Various values of ν, with N =
100 and ∆ = 1.

(c) Various values of ν, with N =
1000 and ∆ = 1/10.

(d) Various values of ν, with N =
1000 and ∆ = 1/10.

(e) Various values of ν, with N =
10000 and ∆ = 1/100.

(f) Various values of ν, with N =
10000 and ∆ = 1/100.

Figure 2: Comparing the accuracy of the damped oscillator with different
values of N .

3



Clearly N = 100, ∆ = 1 is not sufficient for calculating accurately. How-
ever, there seems to be very little difference between using ∆ = 1/10 and
∆ = 1/100.

Now, I’ll classify each case. Recall that, in the differential equation mθ̈+
bθ̇ + kθ = 0, there are three cases:

• b2 < 4mk is underdamping

• b2 > 4mk is overdamping

• b2 = 4mk is critical damping

In our case, assuming small angles, we have θ̈+1/Qθ̇+sin θ ≈ θ̈+1/Qθ̇+
θ = 0, so we have m = 1, b = 1/Q, and k = 1. Now, recall that the physical
parameters were set to g = m = ω0 = 1. Thus Q = mg/(ω0ν) = 1/ν, hence
b = ν. So we have the following cases:

• ν = 1 gives underdamping, since b2 = ν2 = 1 and 4mk = 4.

• ν = 5 gives overdamping since b2 = ν2 = 25 and 4mk = 4.

• ν = 10 gives overdamping, since b2 = ν2 = 100 and 4mk = 4

This is displayed in figure 2. ν = 1 oscillated before dying off, whereas
ν = 5 and ν = 10 both decay very quickly and do not oscillate.

Notice that as N gets larger (and therefore ∆ gets smaller), the solutions
clearly become more stable. Plotted in the following figure is the energy
(which works out to be E = 1 + 1/2ν2 − cos θ) of the system for various
values of ν.

4



Figure 3: The energy of the pendulum. The ν = 0 case is perfectly constant,
as expected. For the damped systems, we see the energy die off to zero as
the oscillations die off.

2.3 Damped Driven Pendulum

Now we can analyse the forced system, with ν 6= 0 and A 6= 0. Throughout
this section, I’ll set l = g = m = 1, ν = 1/2, and ω = 2/3. The initial
conditions will again be θ0 = 0.2, and θ̇0 = 0. I’ll choose ∆ = 1/10000.

In figure 4, with A = 0.5, we can see that the pendulum quickly starts to
follow a stable, periodic motion.

5



(a) A result which tends toward
periodic motion.

(b) The phase space diagram
tends toward a circular pattern,
indicating periodicity.

Figure 4: The driven, damped pendulum with A = 0.5.

We can see this approaches the analytical solution derived in class for
small angles in figure 5.

6



Figure 5: The numerical solution starts approach the (approximate) analytic
solution in long-time behaviour.

However, in figure 6, we see a more chaotic, unpredictable behaviour when
A = 1.2. Unlike in the A = 0.5 case, there is no periodic motion at all; this
is especially clear in the phase space plot, where there is certainly no circular
pattern.

7



(a) Chaotic result with A = 1.2. (b) The phase space plot clearly
indicates there is no periodic mo-
tion.

Figure 6: Chaos.

Finally, just for interest’s sake, I’ve plotted the chaotic A = 1.2 case for
various initial conditions which vary by mere fractions of a percent in figure
7 (I used θ0 = 0.2, 0.20001, 0.20002, and 0.20003, to be exact).

(a) The strong dependence on
initial conditions indicates that
this solution is indeed chaotic.

(b) The same plot as the above
figure, but zoomed in. Interest-
ingly, the trajectories are all al-
most exactly the same until they
suddenly start to differ signifi-
cantly after about 60 seconds.

Figure 7: The same chaotic result using A = 1.2, but with very slightly
different initial conditions.

Now I’ll check the results using the same values for the variables but with

8



A = 1.35, 1.44, and 1.465. This is shown in figure 8.

(a) The angle plots indicates that
the solutions are all quite simi-
lar. The persistently decreasing
angle indicates that the pendu-
lum is looping around in a circle.

(b) The phase space plots show
that the larger A values tend to
alter the motion of the pendulum

Figure 8: Plots with A = 1.35, 1.44, and 1.465.

The value A = 1.35 actually settles on a phase space plot which always
has precisely the same peaks and troughs. Larger values of A tend to increase
the peaks on one loop, and then decrease it on the next. This will become
more clear when we analyze them with the Poincaré maps. The Poincaré
maps are generated by plotting only those points which satisfy ωt = 2πn,
with n ∈ Z. They are plotted in figure 9.

9



Figure 9: The Poincaré Maps for various values of A, corresponding to the
graphs provided in figure 8.

We see that A = 1.35 gives a period of 1, while A = 1.44 gives a period
of 2, and A = 1.465 gives a period of 4.

For the sake of completeness, the Poincaré maps for A = 0.5 and A = 1.2
(the angle and phase space plots of which were plotted earlier) are plotted
in figures 10 and 11, respectively.

10



Figure 10: The Poincaré Map for A = 0.5, which indicates that after a short
period of time, the motion becomes periodic.

11



Figure 11: The Poincaré Map for A = 1.2 (the chaotic result), which gives
an unpredictable result.

3 MATLAB Code

1 clear;clc

2

3 %Simulation Parameters

4 N = 1000000; Delta = 1/1000;

5 tau_min = 0; tau_max = Delta*N;

6

7 %Variables

8 nuArray = [0.5];

9 l = 1;

10 w_true = 2/3;

11 A_trueArray = [1.2];

12 m = 1;

13 g_Earth = 1;

12



14 w_0 = g_Earth/l;

15

16 %Dimensionless variables

17 w = w_true/w_0;

18

19 %Couple differential equations in phi and theta.

20 f = @(phi) phi;

21 g = @(phi , theta , tau , Q, A) -1/Q*phi - sin(theta) + A*cos(w*

tau);

22

23 %Analytic solutions for small angles

24 theta = @(tau , A, Q, w) A*((1-w^2)*cos(w*tau) + w/Q*sin(w*tau

)) / ((1-w^2)^2 + w^2/Q^2);

25

26 %Arrays for the equations of motion

27 tau = linspace(tau_min , tau_max , N);

28 phiArray = zeros(1,N); thetaArray = zeros(1,N);

29

30 nPoincarePoints = floor(tau_max*w / (2*pi));

31 PoincareTimes = zeros(length(nPoincarePoints), 1);

32 PoincareStep = floor ((2*pi/w)/Delta);

33 index = 1;

34 for i = 1: nPoincarePoints

35 PoincareTimes(i) = index;

36 index = index + PoincareStep;

37 end

38

39 %Initial Conditions for theta (If there ’s more than one it

will plot them

40 %all)

41 theta_0 = [0.2, 0.2000001];

42

43 %Plots various values of A

44 for h = 1: length(A_trueArray)

45

46 A = A_trueArray(h)/(m*g_Earth);

47

48 %Plots various values of nu

49 for r = 1: length(nuArray)

50

51 Q = m*g_Earth /( nuArray(r)*w_0);

52

53 %Inital conditions

54 for j = 1: length(theta_0)

55

13



56 phiArray (1) = 0; thetaArray = theta_0(j);

57

58 %Implement RK4

59 for i = 1:N-1

60

61 k1 = Delta * f(phiArray(i));

62 l1 = Delta * g(phiArray(i), thetaArray(i),

tau(i), Q, A);

63

64 k2 = Delta * f(phiArray(i) + l1/2);

65 l2 = Delta * g(phiArray(i) + l1/2, thetaArray

(i) + k1/2, tau(i) + Delta*tau(i)/2, Q, A);

66

67 k3 = Delta * f(phiArray(i) + l2/2);

68 l3 = Delta * g(phiArray(i) + l2/2, thetaArray

(i) + k2/2, tau(i) + Delta*tau(i)/2, Q, A);

69

70 k4 = Delta * f(phiArray(i) + l3);

71 l4 = Delta * g(phiArray(i) + l3 , thetaArray(i

) + k3 , tau(i) + Delta*tau(i), Q, A);

72

73 phiArray(i+1) = 1/6 * (l1+2*l2+2*l3+l4) +

phiArray(i);

74 thetaArray(i+1) = 1/6 * (k1+2*k2+2*k3+k4) +

thetaArray(i);

75

76 end

77

78 figure (1)

79 hold on

80 plot(tau , thetaArray)

81 xlabel(’$\tau$’, ’Interpreter ’, ’LaTeX’)

82 ylabel(’$\theta(\tau)$’, ’Interpreter ’, ’LaTeX’)

83 title(’Pendulum Angle , $\Delta =1/1000$’, ’

Interpreter ’, ’LaTeX ’)

84 hold off

85

86 figure (2)

87 hold on

88 plot(phiArray , thetaArray)

89 xlabel(’$\dot{\ theta }(\tau)$’, ’Interpreter ’, ’

LaTeX ’)

90 ylabel(’$\theta(\tau)$’, ’Interpreter ’, ’LaTeX’)

91 title(’Phase Space , $\Delta =1/1000$’, ’

Interpreter ’, ’LaTeX ’)

14



92 hold off

93

94

95 %Poincare Maps

96

97 PoincareTheta = zeros(nPoincarePoints , 1);

98 PoincarePhi = zeros(nPoincarePoints , 1);

99 for i = 1: nPoincarePoints

100 PoincareTheta(i) = thetaArray(PoincareTimes(i

));

101 PoincarePhi(i) = phiArray(PoincareTimes(i));

102 end

103

104 figure (3)

105 hold on

106 plot(PoincarePhi , PoincareTheta , ’o’)

107 xlabel(’$\dot{\ theta }(\tau)$’, ’Interpreter ’, ’

LaTeX ’)

108 ylabel(’$\theta(\tau)$’, ’Interpreter ’, ’LaTeX’)

109 title(’Poincare Map , A=1.2’)

110 hold off

111

112 %Energy (Unforced)

113 E = zeros(length(tau) ,1);

114 for i = 1: length(tau)

115 E(i) = 1 + 0.5* phiArray(i)^2 - cos(thetaArray

(i));

116 end

117 figure (4)

118 hold on

119 plot(tau , E)

120 xlabel(’$\tau$’, ’Interpreter ’, ’LaTeX’)

121 ylabel(’$E(\tau)$’, ’Interpreter ’, ’LaTeX’)

122 title(’Energy ’)

123 hold off

124

125 Analytic = zeros(length(tau) ,1);

126 for i = 1: length(tau)

127 Analytic(i) = theta(tau(i), A, Q, w);

128 end

129

130 %Comparison to analytic solution. Only holds for

certain

131 %parameters.

132 figure (5)

15



133 hold on

134 plot(tau , thetaArray)

135 plot(tau , Analytic , ’r--’)

136 title(’Comparison to Analytic Solution ’)

137 xlabel(’$\tau$’, ’Interpreter ’, ’LaTeX’)

138 ylabel(’$\theta(\tau)$’, ’Interpreter ’, ’LaTeX’)

139 hold off

140 end

141 end

142 end

16


